The dispensability problem of idealizations regarding the understanding of physical phenomena
DOI:
https://doi.org/10.53382/issn.2735-6140.115Keywords:
Scientific Understanding, Factive/Non-Factive, Factivism/Non-Factivism, Idealizations, Dispensability assumptionAbstract
The debate about scientific understanding has been relevant in the literature of philosophy of science in the last few years. The debate arises over the basis of the received view of understanding that proposes that understanding is a kind of knowledge (Khalifa, 2017, p. 154). In this context, the problem of felicitous falsehoods is presented: inaccurate misrepresentations whose inaccuracy does not abate their epistemic function to understanding phenomena (Elgin, 2017, p. 3). Scientific practice uses idealizations to understand complex phenomena; hence, they are necessary to study the target phenomenon. Nonetheless, there are some proposals in the literature that hold that, despite this, our understanding is factive. Therefore, idealizations are problematic since understanding cannot be based on misrepresentations if understanding is a kind of knowledge. In this paper, I present three factivist replies to the problem regarding the use of idealizations. Nevertheless, these replies assume the dispensability of idealization, a problematic trait since there are cases in which the idealization involved is indispensable to understanding the phenomenon. I employ, as an example, the case of the Nuclear Shell Model used to explain the stability of magic numbers. Factivist replies reduce the idealizations' role to mere convenience; however, the NSM’s idealization cannot be reduced in that way since it is required to understand the phenomenon. The paper aims to expose the problem of assuming a priori the idealizations' dispensability, ignoring their contribution and permeability in that way.
Downloads
References
Bangu, S. (2023). Factivism in Historical Perspective: Understanding the Gravitational Deflection of Light. En Khalifa, K.; Lawler, I. & Sech, E. (Eds.), Scientific Understanding and Representation: Modeling in the Physical Sciences (pp. 62-77). Routledge. https://doi.org/10.4324/9781003202905-7
Cohen, L. J. (1992). An Essay on Belief and Acceptance. Clarendon Press.
Cook, N. (2010). Models of the Atomic Nucleus. Springer.
De la Peña, L. (2019). Introducción a la mecánica cuántica. Fondo de cultura económica.
De Regt, H. (2015). Scientific Understanding: Truth or Dare? Synthese, 192(12), pp. 3781–3797. https://doi.org/gf3jdx
De Regt, H. (2017). Understanding Scientific Understanding. Oxford University Press. https://doi.org/gqj2
De Regt, H. (2023). Can Scientific Understanding Be Reduced to Knowledge? En K. Khalifa, I. Lawler, & E. Sech (Eds.), Scientific Understanding and Representation: Modeling in the Physical Sciences (pp. 17–32). Routledge. https://doi.org/10.4324/9781003202905-3
Elgin, C. (2017). True Enough. MIT Press. https://doi.org/10.7551/mitpress/9780262036535.001.0001
Ferrer, A. (2015). Física nuclear y de partículas. Universitat de València.
Friend, M., & Martínez-Ordaz, M. (2020). Keeping Globally Inconsistent Scientific Theories Locally Consistent. En W. Carnielli, & J. Malinowski (Eds.), Contradictions, from Consistency to Inconsistency (pp. 53-88). Springer. https://doi.org/10.1007/978-3-319-98797-2_4
Frigg, R., & Nguyen, J. (2020). Modelling Nature: An Opinionated Introduction to Scientific Representation. Springer. https://doi.org/pwfh
Gamow, G. (1937). Structure of atomic nuclei and nuclear transformations. Clarendon Press.
Goldman, A. (1999). Knowledge in a Social World. Clarendon. https://doi.org/10.1093/0198238207.001.0001
Hempel, C. G. (1965). Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. Free Press. https://doi.org/dfdd2m
Heyde, K. (1994). The Nuclear Shell Model. Springer-Verlag. https://doi.org/10.1007/978-3-642-79052-2
Khalifa, K. (2017). Understanding, Explanation and Scientific Knowledge. Cambridge University Press. https://doi.org/gqjs
Khalifa, K. (2023). Should Friends and Frenemies of Understanding Be Friends? Discussing de Regt. En K. Khalifa, I. Lawler, & E. Sech (Eds.), Scientific Understanding and Representation: Modeling in the Physical Sciences (pp. 33-50). Routledge. https://doi.org/10.4324/9781003202905-4
Khalifa, K., & Millson, J. (2020). Perspective, Questions, and Epistemic Value. En A. M. Cretu, & M. Massimi (Eds.), Knowledge from a Human Point of View (pp. 87-106). Springer. https://doi.org/10.1007/978-3-030-27041-4_6
Khalifa, K., & Sullivan, E. (2019). Idealizations and Understanding: Much Ado About Nothing? Australasian Journal of Philosophy, 97(4), 673-689. https://doi.org/10.1080/00048402.2018.1564337.
Kitcher, P. (2001). Science, Truth, and Democracy. Oxford University Press. https://doi.org/10.1093/0195145836.001.0001
Kvanvig, J. (2003). The Value of Knowledge and the Pursuit of Understanding. Cambridge University Press. https://doi.org/fs2px6
Lawler, I. (2021). Scientific Understanding and Felicitous Legitimate Falsehoods. Synthese, 198, 6859-6887. https://doi.org/10.1007/s11229-019-02495-0
Lipton, P. (2009). Understanding Without Explanation. En H. de Regt, S. Leonelli, & K. Eiger (Eds.), Scientific Understanding: Philosophical Perspectives (pp. 43-63). University of Pittsburgh Press. https://doi.org/10.2307/j.ctt9qh59s.6
Lorca, N. (2024). Modelos idealizados y representación Z: El caso del liquid drop model en física nuclear. Límite, Revista interdisciplinaria de Filosofía y Psicología, 19, 1-15. https://doi.org/n242
Mayer, M. G., & Jensen, J. H. (1955). Elementary Theory of Nuclear Shell Structure. John Wiley & Sons, inc.
Mizrahi, M. (2012). Idealizations and Scientific Understanding. Philosophical Studies, 160(2), 237-252. https://doi.org/d77s3s
Morrison, M. (2008). Models as Representational Structures. En S. Hartmann, C. Hoefer, & L. Bovens (Eds.), Nancy Cartwright’s Philosophy of Science (pp. 67–90). Routledge.
Morrison, M. (2015). Reconstructing Reality: Models, Mathematics and Simulations. Oxford University Press. https://doi.org/pwfk
Pedersen, N. (2017). Pure Epistemic Pluralism. En A. Coliva, & N. Pedersen (Eds.), Epistemic Pluralism (pp. 47-92). Springer. https://doi.org/10.1007/978-3-319-65460-7_3
Pritchard, D., John, T., & Adam, J. (2022). The Value of Knowledge. En E. N. Zalta & U. Nodelman (Eds.), The Stanford Encyclopedia of Philosophy. Standford University https://plato.stanford.edu/archives/fall2022/entries/knowledge-value/
Potochnik, A. (2017). Idealization and the Aims of Science. The University of Chicago Press. https://doi.org/10.7208/chicago/9780226507194.001.0001
Quine, W. V. (1951). Two Dogmas of Empiricism. En From a Logical Point of View (pp. 20-46). Harper & Row.
Rescher, N. (1970). Scientific Explanation. Free Press.
Rice, C. (2019). Models Don't Decompose That Way: A Holistic View of Idealized Models. The British Journal for the Philosophy of Science, 70(1), 179-208. https://doi.org/gdwscz
Saatsi, J. (2023). Explanatory Power: Factive vs Pragmatic Dimension. En K. Khalifa, I. Lawler, & E. Sech (Eds.), Scientific Understanding and Representation: Modeling in the Physical Sciences (pp. 115-132). Routledge. https://doi.org/10.4324/9781003202905-10
Salmon, W. C. (1989). Four Decades of Scientific Explanation. University of Pittsburgh Press.
Strevens, M. (2017). How Idealizations Provide Understanding. En S. Grimm, C. Baumberger, & S. Ammon (Eds.), Explaining Understanding: New Perspectives from Epistemology and Philosophy of Science (pp. 37-48). Routledge.
Trout, J. D. (2002). Scientific Explanation and the Sense of Understanding. Philosophy of Science, 69(2), 212-33. https://doi.org/dj8d3h
Wittgenstein, L. (2017). Tractatus Logico-Philosophicus. Gredos. (Obra original publicada en 1921)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nibaldo Lorca Améstica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



